
Visual and Acoustic Perception
with Deep Neural Networks

M.Sc Matias Valdenegro-Toro

Ocean Systems Lab - Heriot-Watt University, Scotland (maybe UK)

June 28, 2016

About Me

I PhD Student at Heriot-Watt University.

I Topic: Submerged Marine Debris Detection
and Recognition with Deep Neural Networks.

I Research Interests: Robot and Underwater
Perception, Deep Learning.

Robocademy

Robocademy

I Three research lines: Autonomy, Perception
and Disturbance Rejection.

I 13 Early Stage Researchers.

I Funded by a Marie-Curie Action (Initial
Training Networks).

I Always open for collaborations!

Introduction and Neural Network
Basics

Introduction

I Neural Networks are very old, have survived
several periods of ”no interest” (Neural
Winters).

I Increasing interest lately due to large advances
in some challenges, such as Image
Classification and Speech Recognition.

I Enabled by the availability of large datasets,
GPUs, and better models.

Typical Machine Learning Pipeline

Input Image Handcrafted
Feature Extractor

Trainable
Classifier

Handcrafted features can be: SIFT, SURF, HoG,
LBP, or any kind of feature engineering. Trainable
classifiers are typically SVMs, Random Forests, etc.

Deep Learning Pipeline

Input Image Trainable
Feature Extractor

Trainable
Classifier

In general, learning features from data beats feature
engineering all the time.

Why Learning Features is good?

I Domain adaptation.

I Exploits structures that might not be intuitive
but still be present in data.

I Exploits the most relevant structures first.

I Relevant features are different for each
problem.

I Practice moves faster than theory.

What is Deep Learning?

I Hierarchical models that entirely learn features
and classifiers from data.

I A feature hierarchy is learn from data.

I Depth is defined as number of stages that do
non-linear feature extraction.

I Add more layers to a network!

Feature Hierarchies

I Pixels → Edges → Textons → Parts →
Objects.

I Character → Word → Word Groups →
Sentence → Story.

I Sample → Spectral Band → Sound →
Phoneme → Word.

Why Depth?

I Easier to train than ”Wide” models.

I Requires less data.

I Learns the feature hierarchy. This cannot be
done in Shallow or Wide models.

I Tradeoff between Parallel vs Sequential
Computation.

Neural Networks

I Extremely Non-Linear function approximation
models.

I Universal Function Approximators.

I Adjustable Learning Capacity → O(N logN)
with N total number of neurons in network.

I Considered ”Deep” if more than two hidden
layers.

Multilayer Perceptron

Multilayer Perceptron

z(x) = φ

(∑
i

wixi + b

)
= φ(w · x + b)

Notation

I z : Activation value for input x

I w: Weight vector

I b: Bias value.

I φ(x): Activation function.

Activation Functions

Any non-linear function can be used, its purpose is
to introduce non-linearities into the network
outputs. Ideally it must be differentiable.

Sigmoid

φ(x) =
1

1 + e−x

Hyperbolic Tangent

φ(x) =
e2x − 1

e−2x + 1

Softmax Activation

Vector Activation function that takes a vector in
any range and transforms it into a discrete
probability distribution.

softmax(x) =

{
exj∑
i e

xi

}
j

For example, softmax(10, 3, 1) = [0.99, 0.0009, 0.0].
To output a specific class, take the one with biggest
probability.

Loss Functions
Assuming we have n inputs x and same amount of
target values y we can define a loss (error) function.
Minimizing the loss function is equivalent to
learning.

Regression - Mean Square Error (MSE)

L(f (x), y) =
1

n

∑
i

(f (xi)− yi)
2

Classification - Categorical Cross-Entropy

L(f (x), y) = −
∑
i

∑
c

y ci log(f c(xi))

Minimizing the Loss Function

Minimization is with gradient descent. Weights are
updated with the following rule:

wt+1 = wt − α∇L(f (x), y)

Weights are initially set to random values in the
[−1, 1] range. α ∈ [0, 1] is called the learning rate.
The operator ∇ computes the gradient of the Loss
function with respect to the weights of the network.

∇L(f (x, y)) =

{
∂L

∂w0
,
∂L

∂w1
, . . . ,

∂L

∂wm

}

Learning Rate

Overfitting

I Overfitting is when the trained model
memorizes undesirable patterns from training
data.

I Like models learning noise in the data or
irrelevant features.

I It reduces generalization performance. Models
perform badly on the test set or on different
data.

I Happens when model has too much learning
capacity or it is trained for too long.

Overfitting

Overfitting

Golden Rule
When training a model, compare the loss value on
the training set and on the testing set.
If the loss on the test set is much larger than in
the training set, then the model is overfitting,
specially if the training loss is low.
It is also normal that the test loss is slightly larger
than training loss.

Overfitting

Blue is training loss, Red is validation/test loss.

How to Prevent Overfitting?

I Use regularization or methods that combat
overfitting (Dropout and Batch Normalization).

I Train with more data.

I Reduce model learning capacity.

I Use early stopping. Stop training if validation
loss is not improving.

Regularization

It is a way to ”guide” or introduce additional
information to the learning process in order to
reduce overfitting. The most common way is to
introduce a new term to the loss function:

L∗(f (x), y) = L(f (x), y) + λ
∑
i

|wi |p

λ is a hyperparameter that defines the strength of
regularization and can be computed with
cross-validation. p is typically 1 or 2.

Universal Approximators

The Universal Approximation Theorem 1 states that
MLPs with one hidden layer can learn any function
to arbitrary precision. But it does not say:

I What network configuration can achieve it.

I How it can be trained.

I How much data is required.

1Cybenko., G. (1989) ”Approximations by superpositions of sigmoidal
functions”

Issues with Multilayer Perceptrons

Training Data Size Approximately 20 times the
number of neurons is required as data
points for training.

Overfitting Large MLPs can represent very complex
functions, and they are prone to overfit.

Feature Engineering MLPs do not easily extract
relevant features from the data.

Vanishing Gradient Increasing the number of hidden
layers results in diminishing gradients
which makes the network hard to train.

Black Box It is not possible to easily interpret what
the network has learned.

Using MLPs with Image Inputs

I A p-neuron layer connected to an n ×m image
will have p × n ×m weights.

I Too many weights to be learned.

I The network completely ignores spatial
correlation inside images.

I No translation invariance is built into the
network design.

I In summary, this does not work.

Convolutional Neural Networks

In the 80’s Yann LeCun had the following idea:

I Connect a neuron only to a spatial
neighborhood of the image and slide it on the
image.

I This learns the same weights independent of
location in the image. Less weights to learn.

I This is naturally represented as convolution,
where the convolution filter contains the
neuron weights.

I To reduce the amount of information,
subsample the outputs after convolution.

Example

For a 500× 500 input image:

One Perceptron Layer
100 neurons. 500× 500× 100 = 25M parameters.

Convolutional Layer
100 5× 5 filters. 100× 5× 5 = 2500 parameters.

10K times less parameters to be learned. Better.

Convolution

out(x , y) =
∑
i

∑
j

input(x + i , y + j)k(i , j)

Sub-sampling (Pooling)

Max-Pooling

max
i∈R

i(rx , ry)

Average-Pooling

n−1
∑
i∈R

i(rx , ry)

Advantages

Convolution

I Learned filters are translation invariant.

I Filters (kernels) are interpretable.

I Less parameters to be learned.

Pooling

I Adds small degree of translation invariance.

I Reduces information but keeps important one.

Convolutional Neural Network

I Multilayer Perceptron → Fully Connected
Layer.

I Features are learned in Convolutional layers,
Fully Connected layers act as classifiers.

LeNet - 1989

Trained on the MNIST dataset for digit recognition,
can achieve 99% accuracy.

Network Configurations

To use a CNN to solve a task, one needs to define:

I Network architecture (layers, hyperparameters
for each layer).

I Activation functions (specially at output layer).

I Loss functions.

I Train over a dataset, evaluate on a test set, and
repeat until desired performance is achieved.

Stochastic Gradient Descent
I Most dataset are large (10K, 100K). Evaluating

and differentiating the loss is expensive.
I For really large datasets (millions) it is not

feasible to load them into RAM.
I Solution is to run the network and compute the

loss over a batch of samples.

L(f (x), y) =
1

b

b∑
i

(f (xi)− yi)
2

L(f (x), y) = −
b∑
i

yi log(f (xi))

Stochastic Gradient Descent

I Introduces noise into the learning process but it
is usually tolerable.

I For b = 1 it is called Stochastic Gradient
Descent (SGD).

I For b > 1 it is called Mini-Batch Gradient
Descent (MGD).

I Batch size b has to be tuned as an extra
hyperparameter.

I A whole pass over the a complete dataset is
called an epoch.

Data Augmentation

I CNN’s require large amounts of data to be
trained with good performance.

I New data can be generated by existing data,
must be label invariant.

I Image rotations, flips (up down, left right),
brightness changes.

I PCA, Scaling, Translating, etc.

I Choice completely depends on application,
domain and available data.

Recent CNN Innovations

Dropout

I Hinton et al. noticed that Neural Networks
overfit due to ”co-adaption” between neurons.

I One way to break co-adaption is to introduce
noise into the network.

I Dropout layers can be introduced after
Conv/FC layers.

I Each output from a layer is randomly set to
zero with probability p.

I Common values are p = 0.5 and p = 0.3 2.

2Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I. and
Salakhutdinov, ”Dropout: a simple way to prevent neural networks from
overfitting.” 2014

Dropout

Batch Normalization

I Neural networks require normalized outputs, if
not, training fails.

I Google researchers noticed that by normalizing
inputs to layers, training is faster (less
iterations) and it also introduces regularization.

I Batch Normalization layers compute:

x =
x − E [x]√

Var(x)

y = γx + β

Batch Normalization

I Mean and Variance are computed at each
batch. At test time population statistics are
used.

I γ and β are learned scaling factors.

I Accelerates training by at least four times.

I Reduces the ”co-variate shift” inside the
network.

I Introduces regularization, improving
performance 3.

3Ioffe, S., Szegedy, C. ”Batch normalization: Accelerating deep
network training by reducing internal covariate shift.” 2015

ImageNet Dataset

I Dataset of 1.2 Million color images collected
from the web.

I Labeled into 1000 different classes according to
WordNet nouns.

I Defines different tasks on one challenge, the
ImageNet Large Scale Visual Recognition
Challenge (ILSVRC):

I Image Classification.
I Object Detection.
I Object Localization.

ImageNet Dataset

AlexNet - 2012

AlexNet - 2012

I 5 Conv layers, 3 FC layers, 60 Million
parameters. Softmax outputs.

I Trained on two GPUs for two weeks 4.

I Uses Dropout and ReLU activation function.

relu(x) = max(0, x)

I ILSVRC Top-5 error of 15.3%. Second place
was 26.2%.

4Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. ”Imagenet
classification with deep convolutional neural networks.” 2012.

AlexNet - 2012

AlexNet - 2012

AlexNet - 2012

Why ReLU?

I ReLU = Rectifier Linear Unit.

I Sigmoid and Tanh activations saturate at their
extremes.

I Saturation produces zero gradient → no
learning.

I ReLU learns faster than other activations and
does not saturate.

Why ReLU?

Solid line is ReLU, Dashed line is Tanh.

GoogleNet - 2014

GoogleNet - 2014

GoogleNet - 2014

I 22 layers, 9 inception modules stacked.

I Inception modules represent more functions
with less parameters and computation.

I 7 Network ensemble trained with 144 crops.

I 5 Million parameters 5.

I Top-5 error of 6.67%.

5Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D.,
Rabinovich, A. ”Going deeper with convolutions”. 2015

VGG - 2014

VGG - 2014

I Uses two 3× 3 filters to emulate a 5× 5 filter.

I 16-19 layers, only 3× 3 filters are used.

I Configuration E has 144 Million parameters,
Configuration A has 133 Million parameters.

I Top-5 error of 6.8% over a ensemble of two
networks and multiple crops 6.

6Simonyan, Karen, and Andrew Zisserman. ”Very deep convolutional
networks for large-scale image recognition.” 2014

ResNet - 2015

ResNet - 2015

ResNet - 2015

ResNet - 2015

I ResNet for ILSVRC has 152 layers, approx 2.5
Million parameters.

I 3.57% Top-5 error.

I Authors tested a 1202-layer network for other
purposes.

I The limit is now GPUs memory 7.

7He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. ”Deep
residual learning for image recognition.” 2015.

ILSVRC Summary

Visualizing Deep Neural Networks

I There is always the question of validating or
visualizing internal representation that a
network learns.

I One way by activation maximization, select an
output neuron and compute an image that
maximizes the activation of that neuron.

I Deconvolution networks are also possible. 8

8Zeiler, Matthew D., and Rob Fergus. ”Visualizing and understanding
convolutional networks. 2014.

Deconvolution Networks

Deconvolution Networks

Deconvolution Networks

Deconvolution Networks

Deconvolution Networks

Sensitivity Analysis

Transfer Learning

I CNN’s learn very good features that generalize
well. Can these be transfered for a different
task?

I Sharif et al 9 tested features extracted by a
CNN and combined with a SVM classifier for
different tasks.

I They take a 4096-dimensional feature vector
from one of the fully connected layers.

I It most cases they get pretty close to state of
the art, or beat it.

9Sharif Razavian, A., Azizpour, H., Sullivan, J. and Carlsson, S.”CNN
features off-the-shelf: an astounding baseline for recognition.” 2014

Transfer Learning

Transfer Learning

Current Trends

I Combine Conv-ReLU-Max-Pooling. Stack these
modules.

I Too much Max-Pooling can hurt performance
by discarding too much information.

I Strided convolutions perform better.

I Batch Normalization > Dropout.

I Network architecture tuning is the new feature
engineering.

Neural Network Limitations

I Input sizes are usually fixed. There are some
efforts to solve this.

I Computation is expensive, inference takes time.

I Power hungry (bad for underwater robotics).

I Large labeled datasets are required.

I Lots of hyperparmeters to decide and tune.

Recommendations

I Use grid or random search to decide some
hyperparameters.

I Tune the right learning rate for your
network/data.

I Use Batch Normalization and ADAM.

I Make a learning rate schedule, learning rate
should be reduced as training advances.

I Use data augmentation to generate extra data.

Applications to the Underwater
Domain

Motivation: Submerged Marine Debris

Lots of submerged garbage in coastal areas and deep
sea. Garbage detection by AUVs requires advanced
object detection and recognition capabilities.

High Resolution Forward-Looking Sonar

Convolutional Neural Networks on FLS

Conv(32, 5 × 5) MP(2, 2) Conv(32, 5 × 5) MP(2, 2) FC(64) FC(classes)

Sonar Image Classification

I Crop objects from FLS image and resize/scale
to 64× 64.

I Train CNN over this dataset, with 2500 objects
and 10 different classes.

I Data augmentation: 15 Rotations, ±2 pixel
offsets, 60 combinations total.

I Augmented data set is 150K images.

Template Matching
I We select random examples as templates.

I The example with the biggest similarity is
output as class.

Cross-Correlation

S = (NxNy)−1
∑
x

∑
i

Txy Ixy

Sum of Squared Differences

S = (NxNy)−1
∑
x

∑
i

(Txy − Ixy)2

Sonar Image Classification

Sonar Proposal Generation

I Detection Proposals are generic object
detectors on images.

I We trained a neural network that outputs an
objectness score in [0, 1]. Ground truth of this
score is computed from Intersection-over-Union
(Iou) score:

IoU(A,B) =
area(A ∩ B)

area(A ∪ B)

I 96× 96 sliding window over the image.

Sonar Proposals with a CNN

Sonar Proposals with a CNN

Non-Trained Objects

End-to-End Detection and Recognition

End-to-End Detection and Recognition

Neural Network Implementations

Neural Network Software

Symbolic Computation
Theano, Tensorflow, Lasagne, Keras, etc.

Non-Symbolic Computation
Caffe, Matconvnet, DeepLearning4J, etc.

Symbolic Computation

I Mostly on Python (and Tensorflow in C++).

I Automatic gradient computation through
automatic differentiation.

I Very easy to use, easy to explore network
internals and to experiment.

I Sometimes error messages are pretty confusing!

I Automatic use of the GPU if configured.

Theano

import theano

import theano.tensor as T

x = T.dmatrix(’x’)

s = 1 / (1 + T.exp(-x))

logistic = theano.function([x], s)

logistic([[0, 1], [-1, -2]])

array([[0.5 , 0.73105858],

[0.26894142, 0.11920292]])

Keras

I https://github.com/fchollet/keras

I Pretty nice Deep Learning API. Lots of
examples.

I Theano and Tensorflow Backends.

I Easy to use and useful for rapid prototyping.

Keras

from keras.layers import Dense, Activation

from keras.models import Sequential

model = Sequential()

model.add(Dense(output_dim=64, input_dim=100,

activation = "relu"))

model.add(Dense(output_dim=10,

activation = "softmax"))

model.compile(loss=’categorical_crossentropy’,

optimizer=’sgd’, metrics=[’accuracy’])

model.fit(X_train, Y_train, nb_epoch=5,

batch_size=32)

Available Layers

I Dense, Dropout, Flatten, Reshape, Merge.

I Convolution1D, 2D, 3D, MaxPooling1D, 2D,
3D, AveragePooling1D, 2D, 3D.

I GRU, LSTM.

I BatchNormalization.

I GaussianNoise, GaussianDropout.

Optimizers

I SGD (the default).

I RMSprop.

I Adagrad, Adadelta.

I ADAM (the best).

Optimizer Comparison

Functional API

I Keras’ Sequential API is... well sequential.

I The functional API allows for graph-like
connections between layers and nodes.

I Multiple inputs, and/or multiple outputs.

I Training is performed by a multi-task loss that
is the weighted sum each output’s loss.

Functional API

input_img = Input(shape=(3, 256, 256))

tower_1 = Convolution2D(64, 1, 1)(input_img)

tower_1 = Convolution2D(64, 3, 3)(tower_1)

tower_2 = Convolution2D(64, 1, 1)(input_img)

tower_2 = Convolution2D(64, 5, 5)(tower_2)

tower_3 = MaxPooling2D((3, 3),

strides=(1, 1))(input_img)

tower_3 = Convolution2D(64, 1, 1)(tower_3)

output = merge([tower_1, tower_2, tower_3],

mode=’concat’, concat_axis=1)

Functional API

input tensor for a 3-channel 256x256 image

x = Input(shape=(3, 256, 256))

3x3 conv with 3 output channels

y = Convolution2D(3, 3, 3,

border_mode=’same’)

this returns x + y.

z = merge([x, y], mode=’sum’)

The Future of Deep Learning

Binary Neural Networks

I Replace floating point computation with binary
operations.

I Threshold weights and convert to ±1 values.

I Convolution and FC layers can then be
implemented with XOR bitops.

I Small loss of accuracy but computational
performance improvement of 7-8x.

Autoencoders

I Unsupervised method that learns to code a
representation of the input.

I Neural network that predicts its input, but with
a bottleneck hidden layer.

I Bottleneck layer forces the network to learn a
useful representation of the input.

I Useful to discover structure in the data,
without any labels.s

Autoencoders

Autoencoders

Variational Autoencoders

I Usually one cannot influence the code that an
autoencoder learns.

I A variational autoencoder can make such
influence by imposing a distribution constraint
on the code representation.

I This is done by adding a term to the loss
function. The Kullback-Leibler Divergence
between the coding distribution and a target
distribution is added.

Recurrent Neural Networks

I Neural network that can have connection loops
and recurrence.

I They allow to have ”memory” inside the
network.

I Some applications: Sequence processing, text
generation, image captioning.

Open Research Questions

I Variable-sized inputs.

I Hyperparameter tuning (network structure,
learning rate, regularization, etc).

I Theory lags behind practice.

I Why do Deep Neural Networks work?

Recommended Sites

I http://cs231n.github.io/

I http://www.keras.io

I https://github.com/Theano/Theano

I http://www.tensorflow.org

Recommended Literature

Questions?

	Introduction and Neural Network Basics
	Recent CNN Innovations
	Applications to the Underwater Domain
	Neural Network Implementations
	The Future of Deep Learning

