Underwater Acoustics: understanding the environment to increase autonomy

Yan Pailhas
Heriot-Watt University
What’s the problem?

- More than 70% of the earth’s surface is covered by water…
 …but we know less about it than we do about the surface of Mars!

- Infrastructure on seabed >1000m below surface
 - Deep; dark; dangerous
What is this talk about?

- focus on active sonar
- high frequency sonar

other disciplines:
- very low freq: seismic
- low freq: ASW
- high freq: MCM, imaging
- very high freq: ultrasound monitoring, cell manipulation, medical applications
The sensing problem

Sensing is the link between the physical world and signal processing.

Two different methodologies:
- use a priori knowledge of the physical world to extract useful information
- build the sensor(s) around a specific problem
Underwater acoustics: a very exciting field!

- at the meeting point of various scientific disciplines
- place for creativity
Overview

- A bit of history
- Underwater basics: the sonar equation
- Sidescan sonar: simulator and applications
- SAS
- BioSonar: the power of wideband
- MIMO
A bit of history

“If you cause your ship to stop and place the head of a long tube in the water and place the outer extremity to your ear, you will hear ships at a great distance from you.” Leonardo da Vinci (1490)
The first issue to solve to develop active sonars was to generate sound in water. The high impedance of water compared to air (about 3500 times higher).

Daniel Colladon and Charles Sturm in an experiment in Lake Geneva in Switzerland in 1827 managed to estimate the velocity of sound in water using an underwater bell as a pulse generator.
A bit of history

First breakthrough: discovery of piezoelectricity by Pierre and Jacques Curie in 1880.

In 1917 Charles Langevin and Constantin Chilowsky used the piezoelectric effect of quartz to build the first active sonar.
A bit of history

Second breakthrough: Analog electronics

filtering, amplification and processing were integrated into sonar systems increasing drastically the SNR
A bit of history

Third breakthrough: Digital electronics

- performance
- portability
- versatility
The piezoelectric effect

Principles of piezoelectricity (Lippman, 1881)

\[S = s^{ET} T + d^t E \]
\[D = dT + \epsilon^T E \]
\[\Delta S_3 = d_{33} U_{in} \]
The piezoelectric effect

Synthetic piezocrystals present higher piezoelectric effects than the natural ones. In particular the direct piezoelectric term d_{33} which links linearly the displacement to the electric charge is much higher (around 10 times higher). This property induces a much higher electromechanical efficiency.

The metals are mixed at high temperature (higher than the Curie temperature). A voltage field is then applied to polarise the crystal in one specific direction. A remnant polarisation is then recorded into the intrinsic nature of the piezocrystal.
Sonar electronics
The sonar equation

The sonar equation formulated by Urick describes in a simple manner and from an energetic point of view the basic sonar principles. It relates the energy sent into the water by the transmitter to the energy received by the receiver.

\[SL - 2TL + TS = NL - DI + RL + DT \]

Similarity with the radar equation

\[P_r = \frac{P_t G_t A_r \sigma F^4}{(4\pi)^2 R^4} \]
The sonar equation

The sonar equation despite its simplicity is a powerful tool in order to predict and evaluate the performances of a given sonar. One of the main applications of sonars developed during the 2nd World War was the detection of submarines. For ASW (anti-submarine warfare) detection range is a critical parameter.
The sonar equation

Sound speed in seawater is given by the Mackenzie’s equation (1981)

\[c = 1448.96 + 4.591T - 5.304 \times 10^{-2}T^2 + 2.374 \times 10^{-4}T^3 \\
+ 1.340(S - 35) + 1.630 \times 10^{-2}D + 1.675 \times 10^{-7}D^2 \\
- 1.025 \times 10^{-2}T(S - 35) - 7.139 \times 10^{-13}TD^3 \]

The sound speed in fresh water is given by the empirical equation of Grosso and Mader [1972]:

\[c = 1402.388 + 5.03711T - 0.0580852T^2 \\
+ 3.342 \times 10^{-4}T^3 - 1.478 \times 10^{-6}T^4 + 3.15 \times 10^{-8}T^5 \]
The sonar equation

The Source Level

<table>
<thead>
<tr>
<th>Sonar</th>
<th>Frequency (in kHz)</th>
<th>Source Level (in dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manmade Sonars</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tritech SeaKing Obstacle</td>
<td>325; 675</td>
<td>235</td>
</tr>
<tr>
<td>Avoïdance Sonar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reson SeaBat 8101 Multibeam</td>
<td>240</td>
<td>217</td>
</tr>
<tr>
<td>GeoAcoustics Dual Frequency</td>
<td>114; 410</td>
<td>223</td>
</tr>
<tr>
<td>Sidescan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Didson Detection</td>
<td>1100; 1800</td>
<td>205</td>
</tr>
<tr>
<td>Sonar Acoustic Camera</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HWU Biosonar (prototype)</td>
<td>30 → 150</td>
<td>200</td>
</tr>
<tr>
<td>Biological Sonars</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bottlenose dolphin (Tursiops</td>
<td>30 → 130</td>
<td>228</td>
</tr>
<tr>
<td>truncatus)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>False killer whale (Pseudorca</td>
<td>100 → 130</td>
<td>228</td>
</tr>
<tr>
<td>crassidens)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harbour porpoise (Phocoena</td>
<td>120 → 140</td>
<td>162</td>
</tr>
<tr>
<td>phocoena)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The sonar equation

The Transmission Loss

\[TL = 20 \log r + \alpha r \]

Absorption (Francois and Garisson)
The sonar equation

The Transmission Loss

\[\alpha = \frac{4 \ln(2) \cdot T^2}{c^2} \cdot \quad \text{Frequency (in kHz)} \]

Absorption coefficient \(\alpha \) (in dB/km)

Graph showing the absorption coefficient as a function of frequency at different temperatures: 4°C, 10°C, and 20°C.
The sonar equation

The Target Strength

\[TS = 10 \log \left(\frac{I_r}{I_i} \right) \]

Finite cylinder
The sonar equation

The Reverberation Level

\[RL = SL - 2TL + S_s + 10 \log \frac{cT}{2} \phi r \]
The sonar equation

The Noise Level

Deep water noise spectra: below 10Hz ocean turbulence predominant; 10-150Hz shipping noise is major contributor; 0.1-10kHz dominated by the Knudsen spectra mainly due to wind and wave action; 10-100kHz thermal noise is significant.
The sonar equation

The Beam Pattern and the Directivity Index
Sidescan Sonars

Sidescan configuration
Sidescan Sonars

Sonar gives you a range information.

Range

Signal Amplitude

Water Column

RL noise

Highlight

Shadow

RL noise

Sonar

Seafloor

Target
Sidescan Sonars

- Target Shadow
- Target Echo
- Water Column
- Surface Return
- Seabed Texture
- Sand Ripples
Sidelcast Sonars

Examples of sidescan images
Sidescan Simulator

Motivation: collecting real data is expensive

Parameters

3D Terrain generator

3D Target

3D Trajectory

Sidescan Simulator

Sidescan image
Sidescan Simulator

Seabed variety

generate realistic 3D seabed environments
Sidescan Simulator

Decomposition of the 3D representation of the seafloor in 3 layers: partition between the different types of seabed, global elevation, roughness and texture.

In the late seventies, mathematicians such as Mandelbrot [1982] linked the symmetry patterns and self-similarity found in nature to mathematical objects called fractals.
Sidescan Simulator

3D Targets Generation

- Manta
- Rockan
- Cuboid
- Hemisphere
- Cylinder
- Standing Cylinder
Sidescan Simulator

Plan view of the trajectory of the sonar platform can be placed into the 3D environment.
Sidescan Simulator

Solving the excess level equation:

\[XS = SL - 2TL + TS + DI - NL - RL \]
Sidescan Simulator

Examples of simulated sonar images for different seabed types (clutter, flat, ripples), 3D elevation and scattering strength. (a) represents a smooth seabed with some small variations, (b) represents a mixture of flat and cluttered seabed and (c) represents a rippled seabed.
Sidescan Simulator

Mine like objects at different view angles
Sidescan Simulator: The ATR problem

SAS and forward-looking sonar image of a manta mine.
Sidescan Simulator: The ATR problem

PCA-based classifier:

\[M_i \]

Training set \(M_i \) for each target

\[\tilde{M}_i \]

\[\tilde{M}_i = M_i - \bar{M} \]

\[\text{std} \tilde{M}_i \]

\[T_i = \frac{\tilde{M}_i - M_{\text{mean}}}{\text{std} \tilde{M}_i} \]

\[M_{\text{mean}} = \frac{1}{k} \sum_{i=1}^{k} \tilde{M}_i \]

Eigenvalues analysis

\[\Theta_{\text{target}} \]

\[\Omega = T.T^T \]

\[\Omega = n \times m \]

\[T \]

\[T = n \times m \]

\[k \]
Sidescan Simulator: The ATR problem
Sidescan Simulator: The ATR problem
Classification on highlights
Sidescan Simulator: The ATR problem
Classification on highlights
Sidescan Simulator: The ATR problem
Classification using shadows
Sidescan Simulator: The ATR problem
Classification using shadows

[Graph showing the percentage of misidentification for different objects (Manta, Rockan, Cylinder, Cube) as a function of pixel resolution.]
The last generation of sonar, SAS (Synthetic Aperture Sonar) systems, have been developed in the last 15 years embracing this vision. The centimetric resolution of SAS systems provides a new powerful tool for mine detection, identification and classification. The main advantages of SAS systems are: a resolution close to the wavelength even at long range and a constant resolution across range.
Synthetic Aperture Sonar

Wide beam transducers: multiview
Synthetic Aperture Sonar

Several algorithms are used to compute SAS images. We will use time domain correlation and backpropagation algorithms. The reconstruction techniques take advantage of the broadband and wide beam transducers in order to beat the resolution of conventional sonar systems.

The range resolution is optimized thanks to match filtering:

\[s_M(t, u) = s(t, u) \star p^*(-t) \]

The cross range resolution is obtained through the backpropagation algorithm:

\[f(x, y) = \int_u s_M \left[t, \frac{\sqrt{x^2 + (y - u)^2}}{c} \right] \, du \]
Synthetic Aperture Sonar

SAS image reconstruction via time domain correlation and backprojection algorithms:

- Match Filtering
- Interpolation
- Integration

\[s(t, u) \quad \rightarrow \quad s_M(t, u) \quad \rightarrow \quad f(x, y) \]

Broadband: range compression

Wide beamwidth: cross range compression
Synthetic SAS image

Configuration:

Sound

PVC spherical shell
High frequency Vs. Low frequency

Imaging into the target with low frequency SAS.

configuration:

- Air
- Epoxy resine
- Water
- Fibre Glass
High frequency Vs. Low frequency

High Frequency

Low Frequency
Imaging objects on the seafloor

Adding a simple interface to the problem breaks the symmetry. There is no analytical solution any more.

An approximation of the problem can be found by solving the Helmholtz-Kirchhoff equation:

\[
p(r_i) = \sum_j \left(\frac{\partial G_{ij}}{\partial n_j} p_j - \rho(z_j) \omega^2 G_{ij}(u_n)_j \right) \, dA_j
\]
IMAGING OBJECTS ON THE SEAFLOOR

Half-space Interaction

The tricky term is the Helmholtz-Kirchhoff equation is the Green function and its derivative.

Approximation of the Green function can be found in:

Zampolli et Al. Scattering from objects within layered media, JASA, Vol. 125,6, June 2008.

For targets on the surface:

\[
G_{ij} = \frac{e^{ikR}}{R} + \frac{e^{ikR_1}}{R_1} \left[V(\xi) - i \frac{N}{kR_1} \right]
\]

For targets below the surface:

\[
G_{ij} = i \int_{0}^{+\infty} W(\xi_2) J_0(\xi_2 r) e^{i(\mu_2 \tilde{z}_j - \mu_{2,1} z_1)} \frac{\xi_2}{\mu_2} \, d\xi_2
\]
IMAGING OBJECTS ON THE SEAFLOOR

Half-space Interaction

Sphere on the surface configuration: Simulation

PVC spherical shell (Ø: 50cm) on medium sand (t = 100 µs)
Experiments

Experiments on low frequency SAS has been done in our tank (dimension: 4 x 3 x 2 meters) which is equipped with a cartesian robot (precision = 0.1mm).
The transducers were mounted on the cartesian robot.

- Transducer frequency: (25-90kHz)
- Beamwidth: 40 degrees
Experiments

Targets:
Experiments

Results

Free water

On sandy floor
Experiments

- **Mid-water contribution**
- **Bottom reflection contribution**
- **Specular echo**
- **Secondary echoes**
Rough Surface Interaction

The Kirchhoff model only take into account the specular echoes.
Rough surface interaction

Using Kirchhoff approximation & perfectly reflective material to model the target echo, the Helmholtz-Kirchhoff equation becomes:

\[p(r_i) = \sum_j \frac{\partial G_{ij}}{\partial n_j} p(\tilde{r}_j) dA_j \]

To model the seabed interaction, small perturbation fluid model:

\[\phi(f) = -S(f) \frac{k_1^2}{2\pi} \int \int_{x,y} B(x, y) \tau(x, y) \zeta(x, y) \frac{e^{ik_1(r_s + r_r)}}{r_s r_r} dx dy \]
Rough surface interaction

Configuration:
Rough surface interaction

Magnitude of the scattered field through frequency:
Rough surface interaction

Magnitude of the scattered field through view angle:
Rough surface interaction

Specular echo in free water

Specular echo from the bottom contribution
Rough surface interaction

Specular echo in free water

Specular echo from the bottom contribution
Conclusion

What are we imaging?