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@ Basic concepts of signal processing applied to Underwater acoustics

The correlation (travel time/ range estimation)

Linear systems (impulse response and frequency response)

o Time <> Frequency modelling
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The echosounder!

@ Object detection

@ Range estimation

fathometer (water depth) fishfinder

Range f—
Reflected F .
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pictures from wikipedia
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Principle of range estimation

@ A short pulse is
transmitted

EGD Ao @ The pulse is reflected by
o ] e the object (reflector)

© The receiver detects the
reflected pulse (echo)

o travel time (7): the period elapsed from the transmission till
detection of echo at the receiver

@ sound speed in water(c)

o reflector’s range
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Data model

s(t) transmitted (pulse) signal,
7 travel time (time of flight),
a attenuation weight, transmission loss and reflection loss,

n(t) noise,

y(t) received signal.
y(t) = as(t — 1)+ n(t)
Questions:

@ How to select the signal s(t) ?

@ How to detect the signal?, i.e., How to estimate 77
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Signal correlation

The  cross-correlation  74,(t)  Cross-comrelation
between signals f(t) and g¢g(t) is

a measure of similarity between them f I

as a function of a delay (time-lag),

rro(t) = F(0) % g(t) N

T)f (T)g(r —t)dr f*g
% _-AL

:_f f(t+7)g(r)dr

o rys(t) =17y (~1) L NTRE N N
(noncommutative) ‘ |
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Signal autocorrelation

Autocorrelation
The Autocorrelation 7r,¢(t) is the e
cross-correlation of a signal with itself.
o r¢7(0) represents the energy f
contents of a signal

fuf
r5(0) = / ()P
J, =l | | m
o r17(t) < r77(0), when £ 0 )
W
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Examples of autocorrelation

chirp noise sample
frequency band 10-20Hz, white Gaussian
duration 2s mean (1) 0, variance (02 = 1)

—

= —a "= o
2 2 o 2

2 1
Time (s) Time Time (5)

1 g 0
Time (s) Time Time (s)

e What is the autocorrelation of a sinusoid (ton)?

o Autocorrelation (peak) width is inverse to signal's frequency
bandwidth
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Properties(1)

o when f(t) is g(t) delayed (79 is the delay) , i.e f(t) = g(t — 70),

Tfg(t) = Tgg(t — 0)

The cross-correlation between g(t) and f(¢) is the delayed
autocorrelation of g(t), i.e. 744(t) centered at 79

ot (t)=g(t-to)

P /\ o) =gt ‘Ec)

P. Santos (CINTAL) Time <> Frequency Modelling



Properties(2)

e when f(t) = ag(t), where a is a gain (or attenuation), then

rfq(t) = argg(t)

@ the correlation is additive, i.e. the cross-correlation between
f(t) =wu(t) + v(t) and g(t) is equal to the sum of the
cross-correlation between u(t) and g(t) with the cross-correlation
between v(t) and g(t)

Taf(t) = rgu(t) + 1gu(t)
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Cross-correlation between signal and noise

Chirp's autocorrelation (blue), cross-correlation between chirp and zero
mean white Gaussian noise (red)

{1

aotpandisiodlie .
[ ARy Vi

@ Noise is a random signal, therefore we should consider the average
correlation over various noise realizations.

@ Assuming that signal and noise are independent the average
correlation is zero.
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Travel time estimator

@ the autocorrelation of the probe (transmitted) signal s(¢) should be
narrow (well defined peak)

@ perform the cross-correlation between the probe and the received
signal y(t) = as(t — 7) + n(t)

Transmitted signal

Travel time estimator

T = arg {max|rys(t)|2}

Once 7 is estimated, as-
suming that ¢ (sound
o o speed) is known, the ob-
, A/’»v ject range estimation is
straightforward.
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Passive localization

@ The target transmits broadband signals
@ The receivers are synchronized

@ The signals received in various receivers are cross-correlated

_ 2
@ 7, = arg {max\rab(t)| } y e
Q@ Ty =Ta—Tp
Tac = Ta — Tc
Tobe = Tb — Tc
@ TopCc=Ta —Tp
TacC=Tq — Tc
TheC =Tp = Tc
@ solve the linear system to
estimate rq, 7p, 7c
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System
@ A system is a transformation (mapping) of inputs into outputs

Ij:> System ﬂ

T[] E
; =N

[W1(t), y2(t), s yr ()] = T [21(2), 22(2), ..., TN (1))

@ Single Input Single Output systems(SISO).

inputs
sindino

y(t) = Tlx(t)]

o y(t) is the system response to system input z(t)
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Linear system (1)

Let y(t) the response of the system to the input z(¢):
@ Linear systems obey the principle of superposition (linearity):

o Scaled
Tlaz(t)] = aT[z(t)]

input System output
1]
Xt)  mmmmmmeees >y
axt)  —-—-mmmmm————- > ay(t)
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Linear system (2)

Let y(t) the response of the system to the input z(t):
@ Linear systems obey the principle of superposition (linearity):

o Summed
Tlx1(t) + z2(t)] = Tlx1 ()] + T[x2(t)]

input Sy—?ﬁm output
xft)  —mmmmmmmmmmmooo > yal)
Xo)  —mmmm—m———----- = yalt)

Xa(t)=xy (D Hxa(t) ————————————— - > Ya(t)=ys(ti+ya(t)

o Combining both:

Tlaxi(t) + bxa(t)] = aT'[x1(t)] + 0T [z2(t)]
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Time invariant system

@ A system is time invariant if:

o whether it applies an input to the system now or ty seconds later, the
output will be identical except for a time delay of ¢,

y(t) = Tl(t)] = y(t —to) = Tla(t — to)], Vio € Z

input Sy_lf_s[l(]am output
x(t) oo = y()
X)) —em oo +y(t-to)
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Impulse response

@ The impulse response of a system is its output when the input is an
(unit) impulse (dirac function).

3(t) h(t)

@ The impulse response characterize the system.

e For a linear time-invariant (LTI) system with impulse response
h(t) and input x(t), the output is given by the convolution.
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Convolution & Impulse response

y(t) = / h(t — 7)o (r)dr = / h(r)e(t — 7)dr = h(t) * x(t)

(convolution () is commutative)

Convolution

fkg

=il t)=h(t)x(t
m Xt 0 y(O=h(t)x(t)
A

P. Santos (CINTAL) Time <> Frequency Modelling



Frequency response

@ The frequency response of a system determines, for a sinusoidal input
at a given frequency, the gain and phase shift introduced by the
system. For LTI systems:

o If the input is a sinusoid, the output is also a sinusoid at the same
frequency (the amplitude and phase depends on the frequency
response)

o The frequency response H(w) is the Fourier transform of the impulse
response h(t)
+oo

time (t) —> freq. () H(w) = F{h(t)} = / h(t)eTtdt

—0o0

+oo
freq. (w) —> time (t) h(t):]-"_l{H(w)}:% / H(w)e ! du
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Impulse & Frequency response

x(t) y(t)=x(t)*h(t)
o= <[l= =]
X(o) H(w) Y(w)=X(o)H(w)

H(w)=Y (0)/X(w)

X(w),Y(w),H(w), F(FT) of x(t), y(t), h(t)

P. Santos (CINTAL) Time <> Frequency Modelling



Multipath

@ Due to refraction and reflections the waveform transmitted by the
source is received as a sum of various echoes.

0

Yo

@ Each echo is characterized by the propagation path (trajectory),
attenuation and travel time,

o it depends also on environmental characteristics of the ocean
(underwater acoustic channel).
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Impulse response of an underwater channel

@ The impulse response is given
by:

N

h(t) = And(t—T7)

n=1

N number of echoes; A,,, 7,
h echo attenuation and travel

time (delay).
@ The received signal y(t) is given
by:
N, A,,, 1, characterize the un-
derwater channel between the
transmitter and the receiver ZAnS — ) +n(t)

where s(t) is the transmitted

waveform and n(t) is the noise.
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Arrival pattern (1)

How to estimate NV, A,,, 7, 7

@ Problem of amplitude and time delay estimation of a known signal in
noise.

@ A possible solution is cross-correlating the received signal y(t) with
the transmitted waveform s(¢).
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Arrival pattern (2)

@ The received signal y(t) is cross-correlated with transmitted waveform
s(t):
E{y(t) x s(t)} = (using correlation)
E{y(t)  s"(—t)} = (using convolution)
E{[s(t) * h(t) +n(t)] * s7 (—t)}
E{[s(t) * sT(=t)] x h(t)} + E{n(t) + s (1)}

T'ss ~ 0
rys(t) = 7gs(t) * h(t)
N
= Z Anrss (t - Tn) 5
n=1

@ the output is a (time) function with N peaks Ay, ... A, occurring at
delays 11,...7n
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Arrival pattern (3)

]
2 2
o
2
0
o
0
15
i+
1500 05
ool o o
travel time (s) travel time (s)
Cross-correlation Arrival pattern

@ Arrival pattern
2
a(t) = |rys(t)]

@ Very often the amplitudes are represented in decibel (dB-logarithmic scale)
r(t) = 10log(a(t))

@ Emphasizes latter (weaker) arrivals
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Example: Influence of source location

@ OAEx (July 2009), llha dos porcos, Arraial do Cabo, Brazil
@ sonar source (3-4kHz),

@ source range: 50m to 1200 m,

@ 2 hydrophones: 10 m and 20 m depth.

Sediment ? Velocily, density, altenuation
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Example: Surface tide (water depth)

o INTIMATE'98 data set (Gulf of Biscay)

@ shallow water (wd 140m, sr 10km)

relative time (ms)

180
= 170 MWW
189.4 189.5 189.6 189.7 189.8 190 “189.3 189.4 189.5 189.6 189.7 189.8 189.9

time (julian day) time (julian day)

Santos (CIN Time <> Frequency Modelling



Example: physic-chemical parameters (O5)

@ transmissions over a seagrass bed (Posidonia ocenica), Bay of La Revellata, Corsica
@ attenuation related to photosynthetic activity (released O2 bubbles and air in aerenchyma)

float

subfloat

normalzed ampltudo

Low freq signal Medium freq signal

2

s B2 8

reduced time (5)
reduced time (5)

168 17 172 174 176 178 18 182 184 186 168 17 172 174 176 178 18 182 184 186
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Broadband modeling (time domain modeling)

[Parameters (w,c(2), 1, Z5, Z, )} [Parameters (w,c(2), 1, Z5, Zo, )J
| |

' f

Ray tracing Normal
code mode code
— 7 e

Fourier
Synthesis

Fourier
Synthesis

}
}
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Fourier synthesis

o H(w) is given by the model
@ impulse response

“+oo
h(t) = / H(w)e™du

o received signal y(t) = s(t) = h(t)
+00
y(t) = / () H (w)ei“!du
oo
S(w) source’s frequency response
o cross-correlation 7y4(t) = rs(t) * h(t)
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FT of real signals

fit)=exp(-tuit)
1

08-

06-

04-

02-

If z(t) is a real signal o s T
X(—w) = XH(w) '

1

@ the module | X (w)| is an even
function i

@ the argument (phase) /X (w) is : / \
an odd function :

L]

@ Model computes H(w) only for g T @
positive frequencies

X
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Practical issues (1)

o
o
o
(]
o

select fs depending on the max frequency of source signal

select Ty depending on the expected time spread of h(t)

determine N (N > round{Tp/fs + 1})

determine frequency step Af = fs/N

determine the discrete frequencies (frequency indexes) for the signal’s
band

determine H(w) (only " positive” frequencies) using a propagation
model
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Practical issues (2)

@ Normal modes: for the selected frequencies compute H(w)
o Ray tracing:
e compute A, T for the rays set

o for the central frequency (or selected frequencies) compute H(w) using
the time-delay property of FT F{x(t —to)} = X (w)e 7«to

L
H(w) = ZAle*jml,L number of rays
=1

@ using the FT property of real signals determine the complementary
part of H(w)
o using inverse DFT (IFFT) compute h(t)
o to compute y(t) use S(w)H (w) (in place of H(w))
o to compute 7y5(t) use S(w)SH (w)H (w)
o S(w) is the source spectrum
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